Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Московский государственный университет имени М.В. Ломоносова

Механико-математический факультет Кафедра газовой и волновой динамики

УТВЕРЖДАЮ

Заведующий кафедрой «10» июня 2019г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Наименование дисциплины (модуля):

Численное моделирование динамики деформирования и разрушения

упруговязкопластических сред

наименование дисциплины (модуля)

Уровень высшего образования: специалитет

Направление подготовки (специальность):

01.05.01 Фундаментальные математика и механика

(код и название направления/специальности)

Направленность (профиль) ОПОП: В-ПД

Фундаментальная механика

(если дисциплина (модуль) относится к вариативной части программы)

Форма обучения:

очная

Рабочая программа рассмотрена и одобрена на заседании кафедры газовой и волновой динамики (протокол № 15_, « 10 » июня 20 19 года)

На обратной стороне титула:

Рабочая программа дисциплины (модуля) разработана в соответствии с самостоятельно установленным МГУ образовательным стандартом (ОС МГУ) для реализуемых основных профессиональных образовательных программ высшего образования по направлению подготовки специальности «Фундаментальные математика и механика», реализуемой по схеме программы специалитета в редакции приказа МГУ от 30 декабря 2016 г.

Год (годы) приема на обучение 2013, 2014, 2015
--

- **1.** Место дисциплины (модуля) в структуре ОПОП ВО: *относится* κ *вариативной части ОПОП ВО*.
- **2.** Входные требования для освоения дисциплины (модуля), предварительные условия (если есть): *отсутствуют*. **3.** Результаты обучения по дисциплине (модулю), соотнесенные с требуемыми компетенциями выпускников.

Компетенции выпускников (коды)	Планируемые результаты обучения по дисциплине (модулю), соотнесенные с компетенциями
<i>VK-1</i>	Способность формулировать научно обоснованные гипотезы, создавать теоретические модели явлений и процессов, применять методологию научного познания в профессиональной деятельности.
<i>VK-2</i>	Готовность к саморазвитию, самореализации, использованию творческого потенциала.
VK-14	Способность использовать современные информационно-коммуникационные технологии в академической и профессиональной сферах
ОПК-1	Готовность использовать фундаментальные знания в области математического анализа, комплексного и функционального анализа, алгебры, линейной алгебры, аналитической геометрии, дифференциальной геометрии и топологии, дифференциальных уравнений и уравнений в частных производных, дискретной математики, теории вероятностей, математической статистики и случайных процессов, численных методов, теоретической механики, механики сплошной среды, теории управления и оптимизации в будущей профессиональной деятельности.

ОПК-3	Способность к самостоятельной научно-исследовательской работе.
ОПК-4	Способность находить, анализировать, реализовывать программно и использовать на практике
	математические алгоритмы, в том числе с применением современных вычислительных систем.

ПК-1	Способность к самостоятельному анализу поставленной задачи, выбору корректного метода ее решения,
	построению алгоритма и его реализации, обработке и анализу полученной информации.
ПК-2	Способность к самостоятельному анализу физических аспектов в классических постановках
	математических задач и задач механики.
ПК-3	Способность к самостоятельной научно-исследовательской работе.
ПК-4	Способность находить, анализировать, реализовывать программно и использовать на практике
	математические алгоритмы, в том числе с применением современных вычислительных систем.

- 4. Формат обучения: стандартный.
- **5.** Объем дисциплины (модуля) составляет 2 з.е., в том числе 36 академических часов, отведенных на контактную работу обучающихся с преподавателем, 36 академических часов на самостоятельную работу обучающихся.
- **6.** Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и виды учебных занятий.

Наименование и краткое содержание разделов и	Всего	В том числе				
тем дисциплины (модуля), Форма промежуточной аттестации по дисциплине (модулю)	(часы)	Контактная работа (работа во взаимодействии с преподавателем) Виды контактной работы, часы			Самостоятельная работа обучающегося, часы	
		Занятия лекционного типа*	Занятия семинарского типа*	Всего		
1. Область вычислительной механики сплошной среды. Краткий исторический обзор. Основные этапы вычислительного эксперимента.	3	2		2	1	
2. Понятия сходимости, аппроксимации и устойчивости конечно-разностных схем уравнений в частных производных. Спектральный признак устойчивости. Условие Куранта, Фридрихса и Леви, необходимое для сходимости.	3	2		2	1	
3. Аппроксимационная вязкость. П - и Г- формы первого дифференциального приближения.	3	2		2	1	
4. Простейшие приемы построения аппроксимирующих разностных схем: замена производных разностными отношениями, метод неопределенных	3	2		2	1	

коэффициентов, схемы с пересчетом, или предиктор-корректор				
5. Неявные разностные схемы.	4	2	2	2
6. О решении разностных уравнений неявных разностных схем. Метод прогонки, итерационные методы.	4	2	2	2
7. Расчет разрывных решений. Искусственная вязкость. Дивергентные разностные схемы. Волны одноосных напряжений в длинных стержнях. Анализ по теории с не зависящим от скорости деформаций уравнением состояния (теория Рахматулина—Тейлора—Кармана). Волна разгрузки Рахматулина.	4	2	2	2
8. Метод характеристик применительно к задаче распространения волн одноосных напряжений. Анализ по теории с зависящим от скорости деформаций уравнением состояния (теория Соколовского-Малверна).	4	2	2	2
9. Конечно-разно-разностное решение задачи о соударении тонкого стержня с жесткой стенкой. Продолжительность упругопластического удара	4	2	2	2
10. Текущий контроль успеваемости (собеседование в устной форме)	4	2	2	2
11. Волны одноосных деформаций: задача о плоском соударении пластин с откольным разрушением (определяющие уравнения модели упругопластического течения; конечно-разностная схема метода	4	2	2	2

***				1
Уилкинса; численная реализация				
граничных условий; введение параметров				
поврежденности; критерии разрушения				
Губера-Мизеса-Генки и предельной				
удельной диссипации; метод явного				
выделения поверхностей разрушения;				
анализ результатов расчетов).				
12. Некоторые точные решения одномерных	4	2	2	2
задач динамики несжимаемой вязкой				
жидкости со сферической и				
цилиндрической симметриями. Задача				
Забабахина. Некоторые точные решения				
одномерных задач динамики несжимаемой				
вязкопластической среды со сферической и				
цилиндрической симметриями.				
13. Пространственные динамические	4	2	2	2
упруговязкопластические задачи:				
постановка задач; основные модели сред				
(модели упругого, термоупругого,				
термовязкоупругого тел,				
упругопластического течения типа				
Прандтля-Рейса, упруговязкопластические				
модели типа Соколовского-Пэжины,				
модели сред с внутренними параметрами				
состояния, моделирующими				
микроразрушения типа пор, трещинок,				
полос сдвига)				
14. Пространственные динамические	4	2	2	2
упруговязкопластические задачи:				
постановка задач; основные модели сред				
(модели упругого, термоупругого,				
термовязкоупругого тел,				
1 2 1 2				

упругопластического течения типа Прандтля-Рейса, упруговязкопластические модели типа Соколовского-Пэжины, модели сред с внутренними параметрами состояния, моделирующими микроразрушения типа пор, трещинок, полос сдвига)				
15. Конечно-разностная схема метода Уилкинса на четырехугольных сетках. Обоснование процедуры «приведения напряжений на поверхность текучести» при численном интегрировании уравнений упругопластического течения типа Прандтля-Рейса. Возможные варианты развития метода Уилкинса при больших деформациях в двумерном случае: треугольные сетки, искусственные вязкости специального типа и сглаживание, локальная и глобальная перестройки сетки.	4	2	2	2
16. Особенности постановки и численного решения двумерных осесимметричных задач соударения и проникания (граничные условия на контактных поверхностях взаимодействующих тел, условия на оси симметрии). Анализ результатов расчетов задачи нормального соударения тела вращения с жесткой преградой и задачи нормального пробивания телом вращения пластины конечной толщины.	4	2	2	2

17. Трехмерные упругопластические задачи: постановка задач, определяющие уравнения; конечно-разностная схема метода Уилкинса, численное моделирование граничных условий. Соударение упругопластического тела с жесткой стенкой: особенности процесса взаимодействия в трехмерном случае.	4	2	2	2
18. Современные тенденции развития численных методов решения динамических задач деформирования и разрушения твердых тел	4	2	2	2
Промежуточная аттестация: экзамен (указывается форма проведения)	4			(количество часов,** отведенных на промежуточную аттестацию)
Итого	72			

^{*}Внимание! В таблице должно быть зафиксировано проведение текущего контроля успеваемости, который может быть реализован, например, в рамках занятий семинарского типа.

**, отводимые на проведение промежуточной аттестации, выделяются из часов самостоятельной работы обучающегося

- 7. Фонд оценочных средств (ФОС) для оценивания результатов обучения по дисциплине (модулю).
- 7.1. Типовые контрольные задания или иные материалы для проведения текущего контроля успеваемости: собеседование со слушателями для оценки усвояемости материала и консультаций.

Вопросы для собеседования со слушателями:

- 1. Область вычислительной механики сплошной среды. Краткий исторический обзор. Основные этапы вычислительного эксперимента.
- 2. Понятия сходимости, аппроксимации и устойчивости конечно-разностных схем уравнений в частных производных. Спектральный признак устойчивости. Условие Куранта, Фридрихса и Леви, необходимое для сходимости.
- 3. Аппроксимационная вязкость. П и Г- формы первого дифференциального приближения.
- 4. Простейшие приемы построения аппроксимирующих разностных схем: замена производных разностными отношениями, метод неопределенных коэффициентов, схемы с пересчетом, или предиктор-корректор
- 5. Неявные разностные схемы.
- 6. О решении разностных уравнений неявных разностных схем. Метод прогонки, итерационные методы.
- 7. Расчет разрывных решений. Искусственная вязкость. Дивергентные разностные схемы. Волны одноосных напряжений в длинных стержнях. Анализ по теории с не зависящим от скорости деформаций уравнением состояния (теория Рахматулина—Тейлора—Кармана). Волна разгрузки Рахматулина.
- 8. Метод характеристик применительно к задаче распространения волн одноосных напряжений. Анализ по теории с зависящим от скорости деформаций уравнением состояния (теория Соколовского-Малверна).
- 9. Конечно-разно-разностное решение задачи о соударении тонкого стержня с жесткой стенкой. Продолжительность упругопластического удара
- 7.2. Типовые контрольные задания или иные материалы для проведения промежуточной аттестации: собеседование со слушателями для оценки усвояемости материала и консультаций. Вопросы к экзамену.
 - 1. Область вычислительной механики сплошной среды. Краткий исторический обзор. Основные этапы вычислительного эксперимента.

- 2. Понятия сходимости, аппроксимации и устойчивости конечно-разностных схем уравнений в частных производных. Спектральный признак устойчивости. Условие Куранта, Фридрихса и Леви, необходимое для сходимости.
- 3. Аппроксимационная вязкость. П и Г- формы первого дифференциального приближения.
- 4. Простейшие приемы построения аппроксимирующих разностных схем: замена производных разностными отношениями, метод неопределенных коэффициентов, схемы с пересчетом, или предиктор-корректор
- 5. Неявные разностные схемы.
- 6. О решении разностных уравнений неявных разностных схем. Метод прогонки, итерационные методы.
- 7. Расчет разрывных решений. Искусственная вязкость. Дивергентные разностные схемы. Волны одноосных напряжений в длинных стержнях. Анализ по теории с не зависящим от скорости деформаций уравнением состояния (теория Рахматулина—Тейлора—Кармана). Волна разгрузки Рахматулина.
- 8. Метод характеристик применительно к задаче распространения волн одноосных напряжений. Анализ по теории с зависящим от скорости деформаций уравнением состояния (теория Соколовского–Малверна).
- 9. Конечно-разно-разностное решение задачи о соударении тонкого стержня с жесткой стенкой. Продолжительность упругопластического удара
- 10. Волны одноосных деформаций: задача о плоском соударении пластин с откольным разрушением (определяющие уравнения модели упругопластического течения; конечно-разностная схема метода Уилкинса; численная реализация граничных условий; введение параметров поврежденности; критерии разрушения Губера-Мизеса-Генки и предельной удельной диссипации; метод явного выделения поверхностей разрушения; анализ результатов расчетов).
- 11. Некоторые точные решения одномерных задач динамики несжимаемой вязкой жидкости со сферической и цилиндрической симметриями. Задача Забабахина. Некоторые точные решения одномерных задач динамики несжимаемой вязкопластической среды со сферической и цилиндрической симметриями.
- 12. Пространственные динамические упруговязкопластические задачи: постановка задач; основные модели сред (модели упругого, термоупругого, термовязкоупругого тел, упругопластического течения типа Прандтля-Рейса, упруговязкопластические модели типа Соколовского-Пэжины, модели сред с внутренними параметрами состояния, моделирующими микроразрушения типа пор, трещинок, полос сдвига)

- 13. Пространственные динамические упруговязкопластические задачи: постановка задач; основные модели сред (модели упругого, термоупругого, термовязкоупругого тел, упругопластического течения типа Прандтля-Рейса, упруговязкопластические модели типа Соколовского-Пэжины, модели сред с внутренними параметрами состояния, моделирующими микроразрушения типа пор, трещинок, полос сдвига)
- 14. Конечно-разностная схема метода Уилкинса на четырехугольных сетках. Обоснование процедуры «приведения напряжений на поверхность текучести» при численном интегрировании уравнений упругопластического течения типа Прандтля-Рейса. Возможные варианты развития метода Уилкинса при больших деформациях в двумерном случае: треугольные сетки, искусственные вязкости специального типа и сглаживание, локальная и глобальная перестройки сетки.
- 15. Особенности постановки и численного решения двумерных осесимметричных задач соударения и проникания (граничные условия на контактных поверхностях взаимодействующих тел, условия на оси симметрии). Анализ результатов расчетов задачи нормального соударения тела вращения с жесткой преградой и задачи нормального пробивания телом вращения пластины конечной толщины.
- 16. Трехмерные упругопластические задачи: постановка задач, определяющие уравнения; конечно-разностная схема метода Уилкинса, численное моделирование граничных условий. Соударение упругопластического тела с жесткой стенкой: особенности процесса взаимодействия в трехмерном случае.
- 17. Современные тенденции развития численных методов решения динамических задач деформирования и разрушения твердых тел

ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ результатов обучения (РО) по дисциплине (модулю)								
	Оценка	2	3	4	5			
РО и								
соответству	ющие							
виды оцено	чных							
средств								
Знания		Отсутствие знаний	Фрагментарные знания	Общие, но не	Сформированные			
(виды оцено	чных			структурированные знания	систематические знания			
средств: уст	тные							
опросы)								

Умения	Отсутствие умений	В целом успешное, но не	В целом успешное, но	Успешное и
(виды оценочных		систематическое умение	содержащее отдельные	систематическое умение
средств:			пробелы умение (допускает	
практические			неточности	
контрольные			непринципиального	
задания)			характера)	
Навыки	Отсутствие навыков	Наличие отдельных навыков	В целом, сформированные	Сформированные навыки
(владения, опыт	(владений, опыта)	(наличие фрагментарного	навыки (владения), но	(владения), применяемые
деятельности)		опыта)	используемые не в активной	при решении задач
(виды оценочных			форме	
средств: выполнение				
и защита курсовой				
работы, отчет по				
практике, отчет по				
НИР)				

8. Ресурсное обеспечение:

Основная литература

- 1. Рихтмайер Р., Мортон К. Разностные методы решения краевых задач. М.: Мир, 1972.
- 2. Годунов С.К., Рябенький В.С. Разностные схемы (введение в теорию). М.: Наука, 1973.
- 3. Прочность и разрушение при кратковременных нагрузках / Х.А. Рахматулин, Е.И. Шемякин, Ю.А. Демьянов, А.В. Звягин: учебное пособие. М.: Университетская книга; Логос, 2008.
- 4. *Майборода В.П., Кравчук А.С., Холин Н.Н.* Скоростное деформирование конструкционных материалов. М.: Машиностроение, 1986.
- 5. Высокоскоростное взаимодействие тел / В.М. Фомин, А.И. Гулидов, Г.А. Сапожников, И.И. Шабалин, В.А. Бабаков, В.Ф. Куропатенко, А.Б. Киселев, Ю.А. Тришин, А.И. Садырин, С.П. Киселев, И.Ф. Головлев. Новосибирск: Изд-во СО РАН, 1999.
- 6. Динамика удара: Пер. с англ. / Зукас Дж.А., Николас Т., Свифт Х.Ф. и др. М.: Мир, 1985.
- 7. Кукуджанов В.Н. Вычислительная механика сплошных сред. М.: Физматлит, 2008.
- 8. $Роуч \Pi$. Вычислительная гидродинамика. М.: Мир, 1980.
- 9. Шокин Ю. И., Яненко Н. Н. Метод дифференциального приближения. Приложения к газовой динамике. Новосибирск: Наука, 1985.

- 10. Куликовский А.Г., Погорелов Н.В., Семенов А.Ю. Математические вопросы решения гиперболических систем уравнений. М.: Физматлит, 2001.
- 11. Дьяченко В.Ф. Основные понятия вычислительной математики. М.: Наука, 1977.

Дополнительная литература

- 1. Киселев А.Б. О граничных условиях для задач МДТТ с центральной и осевой симметриями // Вестник МГУ. Серия 1. Математика. Механика. 1995. № 6. С. 106-108.
- 2. Киселев А.Б. О численном интегрировании уравнений течения упрочняющейся упругопластической среды // Вестник МГУ. Серия 1. Математика. Механика. 1995. № 4. С. 71-74.
- 3. *Киселев А.Б.* О динамическом сжатии (расширении) сферической полости в вязкой несжимаемой жидкости. Задача Забабахина // Прикладная физика и математика (П Φ иМ) 2014. № 6 С. 42-46.
- 4. *Киселев А.Б.* К исследованию процесса нестационарного расширения толстостенных сферических и цилиндрических вязкопластических оболочек // Вестник МГУ. Серия 1. Математика. Механика. − 2012. № 6. − С. 20-25.
- 5. *Киселев А.Б.* Численное исследование в трехмерной постановке процесса соударения упругопластических тел с жесткой преградой // Вестник МГУ. Серия 1. Математика. Механика. 1985. № 4. С. 51-56.
- 6. *Киселев А.Б.* К расчету трехмерной задачи высокоскоростного соударения упругопластического стержня с жесткой преградой // Вестник МГУ. Серия 1. Математика. Механика. 1988. № 2. С. 30-36.
- 7. *Киселев А.Б.*, *Юмашев М.В.* Деформирование и разрушение при ударном нагружении. Модель повреждаемой термоупругопластической среды // Прикладная механика и техническая физика (ПМТФ). 1990. № 5. С. 116-123.
- 8. Киселев А.Б., Кабак Н.Е., Максимов В.Ф. Метод построения расчетных сеток в двумерных областях с выделением внутренних контактных границ // Вестник МГУ. Серия 1. Математика. Механика. 1992. № 3. С. 35-42.
- 9. Киселев А.Б. К расчету трехмерной задачи высокоскоростного соударения упругопластического стержня с жесткой преградой // Вестник МГУ. Серия 1. Математика. Механика. 1988. № 2. С. 30-36.
- 10. Уилкинс М., Френч С., Сорем М. Конечно-разностная схема для решения задач, зависящих от трех пространственных координат и времени // Численные методы в механике жидкостей. М.: Мир, 1973. С. 115-119.
- 11. Киселев А.Б. Развитие метода Уилкинса для решения трехмерных задач соударения деформируемых твердых тел // Взаимодействие волн в деформируемых средах. М.: Изд-во МГУ, 1984. С. 87-100.
- 12. Киселев А.Б. Математическое моделирование динамического деформирования и комбинированного микроразрушения термоупруговязкопластической среды // Вестник МГУ. Серия 1. Математика. Механика. 1998. № 6. С. 32-40.

- 13. Веклич Н.А., Малышев Б.М. Продолжительность удара упругопластического стержня // Известия АН СССР. Механика твердого тела. 1976. № 2. С. 193-197.
 - 14. Вычислительные методы в гидродинамике. М.: Мир, 1967 (статьи M. Уилкинса, Дж. Майнчена и C. Сака и ∂p .).
- 9. Язык преподавания: русский
- 10. Преподаватель: профессор А.Б. Киселев
- 11. Автор (авторы) программы: профессор А.Б. Киселев